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Abstract

Particle splitting methods are considered for the estimation of rare
events. The probability of interest is that a Markov process first enters
a set B before another set A, and it is assumed that this probability
satisfies a large deviation scaling. A notion of subsolution is defined
for the related calculus of variations problem, and two main results
are proved under mild conditions. The first is that the number of par-
ticles generated by the algorithm grows subexponentially if and only
if a certain scalar multiple of the importance function is a subsolu-
tion. The second is that, under the same condition, the variance of
the algorithm is characterized (asymptotically) in terms of the subso-
lution. The design of asymptotically optimal schemes is discussed, and
numerical examples are presented.

1 Introduction

The numerical estimation of probabilities of rare events is a difficult problem.
There are many potential applications in operations research and engineer-
ing, insurance, finance, chemistry, biology, and elsewhere, and many papers
(and by now even a few books) have proposed numerical schemes for partic-
ular settings and applications. Because the quantity of interest is very small,
standard Monte Carlo simulation requires an enormous number of samples
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for the variance of the resulting estimate to be comparable to the unknown
probability. It quickly becomes unusable, and more efficient alternatives are
sought.

The two most widely considered alternatives are those based on change-
of-measure techniques and those based on branching processes. The former
is usually called importance sampling, and the latter is often referred to as
multi-level splitting. While good results on a variety of problem formulations
have been reported for both methods, it is also true that both methods can
produce inaccurate and misleading results. The design issue is critical, and
one can argue that the proper theoretical tools for the design of importance
sampling and splitting algorithms were simply not available for complicated
models and problem formulations.

Suppose that the probability of interest takes the form p = P {Z ∈ G} =
µ(G), where G is a subset of some reasonably regular space (e.g., a Polish
space S) and µ a probability measure. In ordinary Monte Carlo one gener-
ates a number of independent and identically distributed (iid) samples {Zi}
from µ, and then estimates p using the sample mean of 1{Zi∈G}. In the
case of importance sampling, one uses an alternative sampling distribution
ν, generates iid samples

{
Z̄i

}
from ν, and then estimates via the sample

mean of [dµ/dν] (Z̄i)1{Z̄i∈G}. The Radon-Nikodim derivative [dµ/dν] (Z̄i)
guarantees that the estimate is unbiased. The goal is to choose ν so that
the individual samples [dµ/dν] (Z̄i)1{Z̄i∈G} cluster tightly around p, thereby
reducing the variance. However, for complicated process models or events G
the selection of a good measure ν may not be simple. The papers [9, 10] show
how certain standard heuristic methods based on ideas from large deviations
could produce very poor results. The difficulty is due to points in S with low
probability under ν for which dµ/dν is very large. The aforementioned large
deviation heuristic does not properly account for the contribution of these
points to the variance of the estimate, and it is not hard to find examples
where the corresponding importance sampling estimator is much worse than
even ordinary Monte Carlo. The estimates exhibit very inaccurate and/or
unstable behavior, though the instability may not be evident from numerical
data until massive amounts have been generated.

The most discussed application of splitting type schemes is to first en-
trance probabilities, and to continue the discussion we specialize to that
case. Thus Z is the sample path of a stationary stochastic process {Xi}
(which for simplicity is taken to be Markovian), and G is the set of trajec-
tories that first enter a set B prior to entering a set A. More precisely, for
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disjoint B and A and x /∈ A ∪ B,

p = p(x) = P {Xj ∈ B, Xi /∈ A, i ∈ {0, . . . , j}, j < ∞|X0 = x} .

In the most simple version of splitting, the state space is partitioned accord-
ing to certain sets B ⊂ C0 ⊂ C1 ⊂ · · · ⊂ CK , with x /∈ CK and A∩CK = ∅.
These sets are often defined as level sets of a particular function V , which
is commonly called an importance function. Particles are generated and
killed off according to the following rules. A single particle is started at
x. Generation of particles (splitting) occurs whenever an existing particle
reaches a threshold or level Ci for the first time. At that time, a (possibly
random) number of new particles are placed at the location of entrance into
Ci. The future evolutions of these particles are independent of each other
(and all other particles), and follow the law of {Xi}. Particles are killed if
they enter A before B. Attached to each particle is a weight. Whenever a
particle splits the weight of each descendent equals that of the parent times
a discount factor. A random tree is thereby produced, with each leaf corre-
sponding to a particle that has either reached B or been killed. A random
variable (roughly analogous to a single sample [dµ/dν] (Z̄i)1{Z̄i∈G} from the
importance sampling approach) is defined as the sum of the weights for all
particles that make it to B. The rule that updates the weights when a par-
ticle splits is chosen so that the expected value of this random variable is
p. This numerical experiment is independently repeated a number of times,
and the sample mean is again used to estimate p.

There are two potential sources of poor behavior in the splitting algo-
rithm. The first and most troubling is that the number of particles may be
large. For example, the number could be comparable θK for some θ > 1. In
settings where a large deviation characterization of p is available, the num-
ber of levels itself usually grows with the large deviation parameter, and so
the number of particles could grow exponentially. We will refer to this as
instability of the algorithm. For obvious computational reasons, instability
is something to be avoided. The other source of poor behavior is analogous
to that of importance sampling (and ordinary Monte Carlo), which is high
relative variance of the estimate. If the weighting rule leads to high varia-
tion of the weights of particles that make it to B, or if too many simulations
produce no particles that make it to B (in which case a zero is averaged in
the sample mean), then high relative variance is likely. Note, however, that
this problem has a bounded potential for mischief, since the weights cannot
be larger than one. Such a bound does not hold for the Radon-Nikodim
derivative of importance sampling.
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When the probability of interest can be approximated via large devia-
tions, the rate of decay is described in terms of a variational problem, such
as a calculus of variations or optimal control problem. It is well known
that problems of this sort are closely related to a family of nonlinear par-
tial differential equations (PDE) known as Hamilton-Jacobi-Bellman (HJB)
equations. In a pair of recent papers [3, 5], it was shown how subsolutions
of the HJB equations associated with a variety of rare event problems could
be used to construct and rigorously analyze efficient importance sampling
schemes. In fact, the subsolution property turns out to be in some sense
necessary and sufficient, in that efficient schemes can be shown to imply the
existence of an associated subsolution.

The purpose of the present paper is to show that in certain circumstances
a remarkably similar result holds for splitting algorithms. More precisely,
we will show the following under relatively mild conditions.

• A necessary and sufficient condition for the stability of the splitting
scheme associated to a given importance function is that a certain
scalar multiple of the importance function be a subsolution of the
related HJB equation. The multiplier is the ratio of the logarithm of
the expected number of offspring for each split and the gap between
the levels.

• If the subsolution property is satisfied, then the variance of the split-
ting scheme decays exponentially with a rate defined in terms of the
value of the subsolution at a certain point.

• As in the case of importance sampling, when a subsolution has the
maximum possible value at this point (which is the value of the cor-
responding solution), the scheme is in some sense asymptotically op-
timal.

These results are significant for several reasons. The most obvious is that
a splitting algorithm is probably not useful if it is not stable, and the subso-
lution property provides a way of checking stability. A second is that good,
suboptimal schemes can be constructed and compared via the subsolutions
framework. A third reason is that for interesting classes of problems it is
possible to construct subsolutions that correspond to asymptotically optimal
algorithms (see [3, 5]). Subsolutions can be much easier to construct than
solutions. In this context it is worth noting that the type of subsolution
required for splitting (a viscosity subsolution [1, 6]) is less restrictive that
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the type of subsolution required for importance sampling. Further remarks
on this point will be given in Section 5.

An outline of the paper is as follows. In the next section we describe
the probabilities to be approximated, state assumptions, and formulate the
splitting algorithm. This section also presents a closely related algorithm
that will be used in the analysis. Section 3 studies the stability problem,
and Section 4 shows how to bound the variance of an estimator in terms
of the related subsolution. The results of Sections 3 and 4 can be phrased
directly in terms of the solution to the calculus of variations problem that
is related to the large deviation asymptotics. However, for the purposes
of practical construction of importance functions the characterization via
subsolutions of a PDE is more useful. These issues are discussed in Section
5, and examples and numerical examples are presented in the concluding
Section 6.

Acknowledgment. Our interest in the parallels between importance sam-
pling and multi-level splitting was stimulated by a talk given by P.T. de
Boer at the RESIM conference in Bamberg, Germany [2].

2 Problem Formulation

2.1 Problem Setting and Large Deviation Properties

A domain D ⊂ R
d is given and also a sequence of discrete time, stationary,

Markov D−valued processes {Xn}. Disjoint sets A and B are given, and
we set τn .= min{i : Xn

i ∈ A ∪ B}. The probability of interest is then

pn(xn) .= P {Xn
τn ∈ B |Xn

0 = xn} .

The varying initial conditions are used for greater generality, but also be-
cause initial conditions for the prelimit processes may be restricted to some
subset of D. The analogous continuous time framework can also be used
with analogous assumptions and results. For a given point x /∈ A ∪ B, we
make the following large deviation-type assumption.

Condition 1 For any sequence xn → x,

lim
n→∞−1

n
log pn(xn) = W (x),

where W (x) is the solution to a control problem of the form

inf
∫ t

0
L
(
φ(s), φ̇(s)

)
ds.
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Here L : R
d × R

d → [0,∞], and the infimum is taken over all absolutely
continuous functions φ with φ(0) = x, φ(t) ∈ B, φ(s) /∈ A for all s ∈ [0, t]
and some t < ∞.

Remark 2 The assumption that {Xn} be Markovian is not necessary for
the proofs to follow. For example, it could be the case that Xn

i is the first
component of a Markov process (Xn

i , Y n
i ) (e.g., so-called Markov-modulated

processes). In such a case it is enough that the analogous large deviation
limit hold uniformly in all possible initial conditions Y n

0 , and indeed the
proofs given below will carry over with only notational changes. This can
be further weakened, e.g., it is enough that the estimates hold uniformly
with sufficiently high probability in the conditioning data. However, the
construction of subsolutions will be more difficult, since the PDE discussed in
Section 5 is no longer available in explicit form. See [5] for further discussion
on this point.

It is useful to say a few words on how one can verify conditions like Con-
dition 1 from existing large deviation results. Similar but slightly different
assumptions will be made in various places in the sequel, and in all cases
analogous remarks will apply.

For discrete time processes one often finds process-level large deviation
properties phrased in terms of a continuous time interpolation Xn(t), with
Xn(i/n) .= Xn

i and Xn(t) defined by piecewise linear interpolation for t
not of the form t = i/n. In precise terms, process-level large deviation
asymptotics hold for {Xn} if the following upper and lower bounds hold for
each T ∈ (0,∞) and any sequence of initial conditions xn ∈ D with xn → x.
Define

IT
x (φ) =

∫ T

0

L
(
φ(s), φ̇(s)

)
ds

if φ is absolutely continuous with φ(0) = x, and IT
x (φ) = ∞ otherwise. If F

is any closed subset of C([0, T ] : D) then the upper bound

lim sup
n→∞

1
n

logP {Xn ∈ F |Xn(0) = xn } ≤ − inf
φ∈F

IT
x (φ)

holds, and if O is any open subset of C([0, T ] : D) then the lower bound

lim inf
n→∞

1
n

logP {Xn ∈ O |Xn(0) = xn } ≥ − inf
φ∈O

IT
x (φ)
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holds. It is also usual to assume that for each fixed x, T, and any M < ∞,
the set {

φ ∈ C([0, T ] : D) : IT
x (φ) ≤ M

}
is compact in C([0, T ] : D). The zero-cost trajectories (i.e., paths φ for
which IT

x (φ) = 0) are particularly significant in that all other paths are in
some sense exponentially unlikely.

With regard to Condition 1, two different types of additional conditions
beyond the sample path large deviation principle are required. One is a con-
dition that allows a reduction to large deviation properties over a finite time
interval. For example, suppose that there is T̄ such that if φ enters neither
A nor B before T̄ , then I T̄

x (φ) ≥ W (x)+ 1. In this case, the contribution to
pn(xn) from sample paths that take longer than T̄ is negligible, and can be
ignored. This allows an application of the finite time large deviation prin-
ciple. Now let G be the set of trajectories that enter B at some time t < T̄
without having previously entered A. By the first condition, the asymptotic
rates of decay of pn(xn) and P {Xn ∈ G |Xn(0) = xn} are the same. The
second type of condition is to impose enough regularity on the sets A and B

and the rate function IT
x (φ) that the infimum over the interior and closure

of G are the same. These points are discussed at length in the literature on
large deviations [7].

Example 3 Assume the following conditions: L(·, ·) is lower semicontinu-
ous; for each x ∈ D, L(x, ·) is convex; L(x, ·) is uniformly superlinear; for
each x ∈ D there is a unique point b(x) for which L(x, b(x)) = 0; b is Lips-
chitz continuous, and all solutions to φ̇ = b(φ) are attracted to θ ∈ A, with A
open. Let D ⊂ D be a bounded domain that contains A and B, and assume
〈b(x), n(x)〉 < 0 for x ∈ ∂D, where n(x) is the outward normal to D at x.
Suppose that the cost to go from x to any point in ∂D is at least W (x) + 1.
Then T̄ as described above exists.

2.2 The Splitting Algorithm

In order to define a spitting algorithm we need to choose an importance
function V (y) and a level size ∆ > 0. We will require that V (y) be continu-
ous and that V (y) ≤ 0 for all y ∈ B. Later on we will relate V to the value
function W , and discuss why subsolutions to the PDE that is satisfied by
W are closely related to natural candidates for the importance function.

To simplify the presentation, we consider only splitting mechanisms with
an a priori bound R < ∞ on the maximum number of offspring. The
restriction is convenient for the analysis, and as we will see is without loss of

7



generality. The set of (deterministic) splitting mechanisms will be indexed
by j ∈ {1, . . . , J}. Given that mechanism j has been selected, r(j) particles
(with |r(j)| ≤ R) are generated and weights w(j) ∈ R

r(j)
+ are assigned to

the particles. Note that we do not assume
∑r(j)

i=1 wi(j) = 1. The class of all
splitting mechanisms (i.e., including randomized mechanisms) is identified
with the set of all probability distributions on {1, . . . , J}.

Associated with V are the level sets

Lz = {y ∈ D : V (y) ≤ z}.
A key technical condition we use is the following. In the condition, Ex

denotes expected value given Xn
0 = x.

Condition 4 Let z ∈ [0, V (x)] be given and define σn .= min {i : Xn
i ∈ A ∪ Lz}.

Then

lim inf
n→∞ −1

n
logExn

[
1{Xn

σn∈Lz} (pn(Xn
σn))2

]
≥ W (x) + inf

y∈∂Lz

W (y).

Under the conditions discussed after Condition 1 which allow one to con-
sider bounded time intervals, Condition 4 follows from the Markov property
and the large deviation upper bound.

We also define collections of sets
{

Cn
0 = B, Cn

j = L(j−1)∆/n, j = 1, . . .
}
.

Define the level function ln by ln(y) .= min{j ≥ 0 : y ∈ Cn
j }. The location of

the starting point corresponds to ln(x) = �nV (x)/∆, and ln = 0 indicates
entry into the target set B. The splitting algorithm associated with a partic-
ular distribution q will now be defined. Although the algorithm depends on
V, q, r, w, xn, ∆, A and B, to minimize notational clutter these dependencies
are not explicitly denoted.

Splitting Algorithm (SA)

Variables:
Nn

r number of particles in generation r

Xn
r,k position of kth particle in generation r

wn
r,k weight of kth particle in generation r

Initialization Step:
Nn

0 = 1, Xn
0,1 = xn, wn

0,1 = 1
for r = 1, . . . , ln(xn)

Nn
r = 0

end
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Main Algorithm:
for r = 1, . . . , ln(xn)

if Nn
r−1 = 0 then Nn

r = 0
else

for j = 1, . . . , Nn
r−1

generate Zn
r,j,i a single sample of a process with the

same law as Xn
i and initial condition Zn

r,j,0 = Xn
r−1,j

let τn
r,j = inf{i : Zn

r,j,i ∈ A ∪ Cn
ln(xn)−r}

Splitting Step begin
if Zn

r,j,τn
r,j

/∈ A

let M be an independent sample from the law q

for k = 1, . . . , |r(M)|
Nn

r = Nn
r + 1

Xn
r,Nn

r
= Zn

r,j,τn
r,j

wn
r,Nn

r
= wk(M)wn

r−1,j

end
end
Splitting Step end

end
end

end
Construction of a sample:

once all the generations have been calculated we form
the quantity

sn
SA =

∑Nn
ln(xn)

j=1 wn
ln(xn),j.

An estimate p̂n
SA(xn) of pn(xn) is formed by averaging a number of inde-

pendent samples of sn
SA. Observe that once generation r has been calculated

the information about generations 0 to r − 1 can be discarded, and so there
is no need to keep all the data in memory until completion of the algorithm.
Also note that in practice there is no need to split upon entering Cn

0 = B.

We first need to find conditions under which this splitting algorithm gives
an unbiased estimator of pn(xn). To simplify this and other calculations we
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Cn
0

B

Cn
2

x

A

Cn
1

Figure 1: The Sets A and B and Level Sets of V .

introduce an auxiliary algorithm titled Splitting Algorithm Fully Branching
(SFB). The essential difference between the two is that the process dynamics
are redefined in A to make it absorbing, and that splitting continues even
after a particle enters A. When the estimate is constructed we only count the
particles which are in B in the last generation, so that the two estimates have
the same distribution. The SFB algorithm is more convenient for purposes
of analysis, because we do not distinguish those particles which have entered
A from those which still have a chance to enter B. Of course this algorithm
would be terrible from a practical perspective–the total number of particles
is certain to grow exponentially. However, the algorithm is used only for
the purposes of theoretical analysis, and the number of particles is not a
concern. Overbars are used to distinguish this algorithm from the previous
one.

Splitting Algorithm Fully Branching (SFB)

Variables:
N̄n

r number of particles in generation r

X̄n
r,k position of kth particle in generation r

w̄n
r,k weight of kth particle in generation r

10



Initialization Step:
N̄n

0 = 1, X̄n
0,1 = xn, w̄n

0,1 = 1
for r = 1, . . . , ln(xn)

N̄n
r = 0

end
Main Algorithm:

for r = 1, . . . , ln(xn)
if N̄n

r−1 = 0 then N̄n
r = 0

else
for j = 1, . . . , N̄n

r−1

generate Z̄n
r,j,i a single sample of a process with the

same law as X̄n
i and initial condition Z̄n

r,j,0 = X̄n
r−1,j

let τ̄n
r,j = min{i : Z̄n

r,j,i ∈ A ∪ Cn
ln(xn)−r}

Splitting Step begin
let M̄ be an independent sample from the law q
for k = 1, . . . , |r(M̄)|

N̄n
r = N̄n

r + 1
X̄n

r,N̄n
r

= Z̄n
r,j,τ̄n

r,j

w̄n
r,N̄n

r
= wk(M̄)w̄n

r−1,j

end
Splitting Step end

end
end

end
Construction of a sample:

once all the generations have been calculated we form
the quantity

sn
SFB =

∑N̄n
ln(xn)

j=1 1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j.

Since the distributions of the two estimates coincide

Exn


Nn

ln(xn)∑
j=1

wn
ln(xn),j


 = Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j


 .

Because of this, the SFB algorithm can be used to prove the following.
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Lemma 5 An estimator based on independent copies of sn
SA is unbiased if

and only if

E


r(M )∑

i=1

wi(M)


 = 1.

Proof. It suffices to prove

Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j


 = pn(xn).

We will use a particular construction of the SFB algorithm that is useful
here and elsewhere in the paper. Recall that with this algorithm every
particle splits at every generation. Hence the random number of particles
associated with each splitting can be generated prior to the generation of
any trajectories that will determine particle locations. As a consequence, the
total number of particles present at the last generation can be calculated, as
can the weight that will be assigned to each particle in this final generation,
prior to the assignment of a trajectory to the particle. Once the weights
have been assigned, the trajectories of all the particles can be constructed
in terms of random variables that are independent of those used to construct
the weights. Since the probability that any such trajectory makes it to B
prior to hitting A is pn(xn),

Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j


 = pn(xn)Exn




N̄n
ln(xn)∑
j=1

w̄n
ln(xn),j


 .

A simple proof by induction and the independence of the splitting from
particle to particle shows that

Exn




N̄n
ln(xn)∑
j=1

w̄n
ln(xn),j


 =


E


r(M )∑

i=1

wi(M)






ln(xn)

.

For the rest of the paper we restrict attention to splitting mechanisms
that are unbiased.
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3 Stability

Now let an importance function V , level ∆, and splitting mechanism (q, r, w)
be given. Define

J (x, y) .= inf
φ,t:φ(0)=x,φ(t)=y

∫ t

0
L
(
φ(s), φ̇(s)

)
ds, (1)

where the infimum is over absolutely continuous functions. A function W̄ :
D → R will be called a subsolution if W̄ (x) ≤ 0 for all x ∈ B and if
W̄ (x) − W̄ (y) ≤ J (x, y) for all x, y ∈ D\ (A ∪ B). In Section 5 we will
discuss conditions under which W̄ can be identified as a viscosity subsolution
for an associated PDE. Recall that a splitting algorithm is called stable if
the total number of particles ever used grows subexponentially as n → ∞.
For a given splitting algorithm define

W̄ (x) =
log Er(M)

∆
V (x). (2)

In this section we show that, loosely speaking, a splitting algorithm is stable
if and only if W̄ is a subsolution.

A construction that will simplify some of the proofs is to replace a
given splitting mechanism by one for which all the weights are constant.
Thus (q, r, w) is replaced by (q, r, w̄), where for each j = 1, . . . , J and
i = 1, . . . , r(j),

[w̄i(j)]
−1 = Er(M) =

J∑
j=1

r(j)qj.

The new splitting mechanism is also unbiased, and the distribution of the
number of particles at each stage is the same as that of (q, r, w).

To establish the instability we make a very mild assumption on a large
deviation lower bound for the probability that an open ball is hit prior to
reaching A. This assumption can be expected to hold under conditions
which guarantee Condition 1.

Proposition 6 Consider an importance function V , level ∆, and split-
ting mechanism (q, r, w), and define W̄ by (2). Suppose there exists y ∈
D\ (A ∪ B) such that W̄ (y) > 0 and

W̄ (x) − W̄ (y) > J (x, y). (3)

13



Assume that J (x, y) is continuous at y. Let p̃n(xn) be the probability that
Xn enters the ball of radius δ > 0 about y before entering A, given Xn

0 = xn,
and assume

lim inf
n→∞

1
n

log p̃n(xn) ≥ − inf
z:|z−y|<δ

J (x, z).

Then the corresponding splitting algorithm is not stable.

Proof. It is enough to prove the instability of the algorithm that uses
(q, r, w̄). Since J (x, y) > 0, V (y) < V (x). From the definition of W̄ in (2)
and (3) there exist δ > 0 and ε > 0 such that for all z with |y − z| ≤ δ,

[V (x)− V (z)]
logEr(M)

∆
> J (x, z) + ε.

Let S
.= {z : |y − z| < δ}. By taking δ > 0 smaller if necessary we can

guarantee that S ∩ A = ∅ and V (z) > 0 for all z ∈ S.

y

B

x

A

C̄n
0

C̄n
1

C̄n
2

Figure 2: Level Sets of V̄ in Proof of Instability.

Suppose one were to consider the problem of estimating p̃n(xn). One
could use the same splitting mechanism and level sets, and even the same
random variables, except that one would stop on hitting A or S rather

14



than A or B, and the last stage would correspond to some number mn ≤
ln(xn). Of course, since V is positive on S it will no longer work as an
importance function, but there is a function V̄ = V − a that will induce
exactly the same level sets as V and which can serve as an importance
function for this problem. See Figure 2. The two problems can be coupled,
in that exactly the same random variables can be used to construct both
the splitting mechanisms and particle trajectories up until the particles in
the p̃n(xn) problem enter C̄n

1 .
If a particular particle has not been trapped in A prior to entering C̄n

1 ,
then that particle would also not yet be trapped in A in the corresponding
scheme used to estimate pn(xn). Note also that the number of particles
that make it to S are at most R times the number that make it to C̄n

1 .
Let Ñn

mn denote the number of particles that make it to S in the SA used
to approximate p̃n(xn), and let Nn

ln(xn) be the number used in the SA that

approximates pn(xn). Then Nn
ln(xn) ≥ Ñn

mn/R.
Using the SFB variant in the same way that it was used in the proof of

Lemma 5 and that the mechanism (q, r, w̄) is used,

p̃n(xn) = Exn


Ñn

mn∑
j=1

w̃n
mn,j




= Exn


Ñn

mn∑
j=1

[Er(M)]−mn




= [Er(M)]−mn

Ex

[
Ñn

mn

]
.

We now use the lower bound on p̃n(xn) and that mn/n → [V (x) − supz∈S V (z)] /∆:

lim inf
n→∞

1
n

log Exn

[
Ñn

mn

]
= lim inf

n→∞
1
n

logExn

[
p̃n(xn) [Er(M)]m

n
]

≥ − inf
z∈S

J (x, z) +
[V (x) − supz∈S V (z)]

∆
log [Er(M)]

≥ inf
z∈S

[
[V (x)− V (z)]

∆
log [Er(M)]− J (x, z)

]
≥ ε.

It follows that
lim inf
n→∞

1
n

log Exn

[
Nn

ln(xn)

]
≥ ε > 0,

15



which completes the proof.

The next proposition considers stability. Here we will make a mild as-
sumption concerning a large deviation upper bound, which can also be ex-
pected to hold under conditions which guarantee Condition 1.

Proposition 7 Consider an importance function V , level ∆, and splitting
mechanism (q, r, w), and define W̄ by (2). Suppose that

W̄ (x)− W̄ (y) ≤ J (x, y)

for all x, y ∈ D\ (A ∪ B) and that W̄ (y) ≤ 0 for all y ∈ B. Consider any
a ∈ (0, V (x)/∆], let p̃n(xn) be the probability that Xn enters level set La

before entering A (given Xn
0 = xn), and assume

lim sup
n→∞

1
n

log p̃n(xn) ≤ − inf
z∈La

J (x, z).

Then the corresponding splitting algorithm is stable.

Proof. For each n let rn be the value in {1, . . . , ln(x)} that maximizes r →
Ex [Nn

r ]. Since rn/n is bounded, along some subsequence (again denoted
by n) we have rn/n → v ∈ [0, V (x)/∆]. Using the usual argument by
contradiction, it is enough to prove

lim sup
n→∞

1
n

logExn [Nn
rn ] ≤ 0

along this subsequence. First suppose that v = 0. Given δ > 0, choose
n̄ < ∞ such that rn/n ≤ δ for all n ≥ n̄. Then Nn,xn

rn ≤ Rδn, and so
lim supn→∞

1
n logExn [Nn,xn

rn ] ≤ δ · logR. Since δ > 0 is arbitrary, this case
is complete.

Now assume v ∈ (0, V (x)/∆] and let δ ∈ (0, v) be given. Suppose one
were to consider the problem of estimating p̃n(xn) as defined in the statement
of the proposition, with a = v. We again use the same splitting mechanism
and level sets, except that we now stop on hitting A or Lv+δ . An impor-
tance function with these level sets can be found by adding a constant to
V . We again couple the processes, and observe that entry into C̄n

1 for the
p̃n(xn) problem corresponds to entry into Cn

mn
in the pn(xn) problem, where

mn/n → (V (x) − v − δ)/∆ as n → ∞. Observe that every particle in the

16



Lv+δ

x

A

C̄n
1

C̄n
2

Figure 3: Level Sets of V̄ in Proof of Stability.

algorithm used to estimate pn(xn) that is not trapped in A by stage mn is
also not trapped in A in the algorithm used to estimate p̃n(xn). Hence the
number of such particles can serve as an upper bound on the number used
to construct sn

SA. Let Ñn
mn denote the number of such particles for the SA

used to estimate p̃n(xn).
We again use the SFB variant in the same way that it was used in the

proof of Lemma 5 and the (q, r, w̄) splitting mechanism to obtain

p̃n(xn) = [Er(M)]−mn

Exn

[
Ñn

mn

]
.

Using the upper bound on p̃n(xn) and that mn/n → [V (x) − v − δ] /∆:

lim sup
n→∞

1
n

logExn

[
Ñn

mn

]
= lim sup

n→∞
1
n

logExn

[
p̃n(xn) [Er(M)]m

n
]

≤ − inf
z∈Lv+δ

J (x, z) +
[V (x)− v − δ]

∆
log [Er(M)]

= sup
z∈Lv+δ

[
[V (x)− V (z)]

∆
log [Er(M)]−J (x, z)

]
≤ 0.

For sufficiently large n we have rn − mn ≤ 2δn/∆, and hence Nn
rn ≤ Ñn

mn ·

17



R2δn/∆. It follows that

lim sup
n→∞

1
n

logExn [Nn
rn ] ≤ (2δ/∆) · logR,

and since δ > 0 is arbitrary the proof is complete.

4 Asymptotic Performance

Since the sample sn
SA has mean pn(xn), any estimator constructed as an

average of independent copies of sn
SA is unbiased and has variance propor-

tional to varxn [sn
SA]. Once the mean is fixed, the minimization of varxn [sn

SA]
among splitting algorithms is equivalent to the minimization of Exn [sn

SA]2.
It is of course very difficult to find the minimizer in this problem. When a
large deviation scaling holds, a useful alternative is to maximize the rate of
decay of the second moment, i.e., to maximize

lim inf
n→∞ −1

n
logExn [sn

SA]2 = lim inf
n→∞ −1

n
logExn


Nn

ln(xn)∑
j=1

wn
ln(xn),j




2

.

By Jensen’s inequality the best possible rate is 2W (x):

lim inf
n→∞ −1

n
logExn [sn

SA]2 ≥ lim inf
n→∞ −2

n
logExn [sn

SA] ≥ 2W (x).

The main result of this section is the following.

Theorem 8 Consider an importance function V , level ∆, and splitting
mechanism (q, r, w), and define W̄ by (2). Suppose that

W̄ (x)− W̄ (y) ≤ J (x, y)

for all x, y ∈ D\ (A ∪ B) and that W̄ (y) ≤ 0 for all y ∈ B. Assume also
that Conditions 1 and 4 hold. Then

lim
n→∞−1

n
logExn [sn

SA]2 = W (x) − V (x)
log
(
E
∑r(M )

i=1 wi(M)2
)

∆
.
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Proof. It is sufficient to consider the SFB algorithm and prove that

lim
n→∞−1

n
log Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j




2

= W (x) − V (x)
log
(
E
∑r(M )

i=1 wi(M)2
)

∆
.

The proof is broken into upper and lower bounds.
We first prove

lim sup
n→∞

−1
n

log Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j




2

(4)

≤ W (x) − V (x)
log
(
E
∑r(M )

i=1 wi(M)2
)

∆
.

In the following display we drop cross terms to obtain the inequality, and
then use the same construction as in Lemma 5 under which the weights and
trajectories are independent to obtain the equality.

lim sup
n→∞

−1
n

logExn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j




2

≤ lim sup
n→∞

−1
n

log Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

} (w̄n
ln(xn),j

)2




= lim sup
n→∞

−1
n

log


pn(xn)Exn




N̄n
ln(xn)∑
j=1

(
w̄n

ln(xn),j

)2




 .

Suppose we prove that for any κ (and in particular κ = ln(xn)), that

Exn


 N̄n

κ∑
j=1

(
w̄n

κ,j

)2 =


E

r(M )∑
i=1

wi(M)2




κ

. (5)

Since ln(xn) = �nV (xn)/∆, (4) will follow from Condition 1. The proof of
(5) is by induction. Let Mj denote the independent random variables used
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to define the splitting for the jth particle at stage κ. Then

Exn


N̄n

κ+1∑
j=1

(
w̄n

κ+1,j

)2 = Exn


 N̄n

κ∑
j=1

(
w̄n

κ,j

)2 r(Mj)∑
i=1

wi(Mj)2




= Exn


 N̄n

κ∑
j=1

(
w̄n

κ,j

)2

E

r(M )∑
i=1

wi(M)2




=


E

r(M )∑
i=1

wi(M)2




κ+1

.

We now turn to the proof of the lower bound

lim inf
n→∞ −1

n
log Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j




2

(6)

≥ W (x) − V (x)
log
(
E
∑r(M )

i=1 wi(M)2
)

∆
.

For each stage κ, let Mn
κ,j denote the independent random variables used in

the splitting of particle j ∈ {1, . . . , N̄n
κ

}
. Also, let In

κ,j denote the disjoint
decomposition of the particles in

{
1, . . . , N̄n

κ+1

}
according to their parent

particle. Observe that if k, l ∈ In
κ,j, k �= l, then for all particles descended

from k and l, κ is the time of their last common ancestor. Given k ∈ In
κ,j,

let Īn
κ+1,ln(xn),k denote the descendants of this particle at stage ln(xn). With
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this notation we can write

Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j




2

=
ln(xn)−1∑

κ=1

Exn


 N̄n

κ∑
j=1

∑
k,l∈In

κ,j ,k �=l

∑
mk∈Īn

κ+1,ln (xn),k

1{
X̄n

ln(xn),mk
∈B

}w̄n
ln(xn),mk

·
∑

ml∈Īn
κ+1,ln (xn),k

1{
X̄n

ln(xn),ml
∈B

}w̄n
ln(xn),ml




+Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

} (w̄n
ln(xn),j

)2


 .

Let w̄n
κ,j denote the products of the weights accumulated by particle

j ∈ {1, . . . , N̄n
κ

}
up to stage κ, and let w̄n

κ+1,ln(xn),m denote the product of

the weights accumulated by particle m ∈
{

1, . . . , N̄n
ln(xn)

}
between stages

κ+1 and the final stage. Finally, let Fn
κ denote the sigma algebra generated

by Mn
s,j , s ∈ {1, . . . , κ} , j ∈ {

1, . . . , N̄n
s

}
and the random variables used

to construct X̄n
s,j for these same indices. Note that the future weights are

independent of Fn
κ , and that the distribution of X̄n

ln(xn),m depends on Fn
κ

only through X̄n
κ,j if k ∈ In

κ,j and m ∈ Īn
κ+1,ln(xn),k. We introduce the

notation

Y n
κ,j

.= 1{X̄n
κ,j /∈A}

(
w̄n

κ,j

)2
,

Zn
κ,k

.=
∑

m∈Īn
κ+1,ln (xn),k

1{
X̄n

ln(xn),m
∈B

}w̄n
κ+1,ln(xn),m
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By conditioning on Fn
κ we get

Exn


 N̄n

κ∑
j=1

∑
k,l∈In

κ,j ,k �=l

∑
mk∈Īn

κ+1,ln(xn),k

1{
X̄n

ln(xn),mk
∈B

}w̄n
ln(xn),mk

(7)

·
∑

ml∈Īn
κ+1,ln(xn),k

1{
X̄n

ln(xn),ml
∈B

}w̄n
ln(xn),ml




= Exn


 N̄n

κ∑
j=1

Y n
κ,j

∑
k,l∈In

κ,j ,k �=l

wk(Mn
κ,j)Z

n
κ,kwl(Mn

κ,j)Z
n
κ,l




= Exn


 N̄n

κ∑
j=1

Y n
κ,j

∑
k,l∈In

κ,j ,k �=l

wk(Mn
κ,j)wl(Mn

κ,j)EX̄n
κ,j

[
Zn

κ,k

]
EX̄n

κ,j

[
Zn

κ,l

] .

Using again the independence of the weights and trajectories as used in the
proof of Lemma 5, we have

EX̄n
κ,j

[
Zn

κ,k

]
= pn

(
X̄n

κ,j

)
.

Since

W .= E
∑
k �=l

wk(M)wl(M) = E

[∑
k

wk(M)

]2

− E

[∑
k

wk(M)2
]

,

the final expression in (7) equals

WExn


 N̄n

κ∑
j=1

Y n
κ,jp

n
(
X̄n

κ,j

)2 .

We conclude that

Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j




2

= W
ln(xn)−1∑

κ=1

Exn


 N̄n

κ∑
j=1

Y n
κ,jp

n
(
X̄n

κ,j

)2

+Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

} (w̄n
ln(xn),j

)2


 .
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For a final time we use that the weights and trajectories are independent,
and also (5), to argue that for any bounded and measurable function F and
any stage κ,

Exn


 N̄n

κ∑
j=1

F
(
X̄n

κ,j

) (
w̄n

κ,j

)2 = Exn

[
F
(
X̄n

κ,1

)]
Exn


 N̄n

κ∑
j=1

(
w̄n

κ,j

)2

= E


r(M )∑

i=1

wi(M)2




κ

Exn

[
F
(
X̄n

κ,1

)]
.

Thus

Exn




N̄n
ln(xn)∑
j=1

1{
X̄n

ln(xn),j
∈B

}w̄n
ln(xn),j




2

= W
ln(xn)−1∑

κ=1


E

r(M )∑
i=1

wi(M)2




κ

Exn

[
1{X̄n

κ,1 /∈A}pn
(
X̄n

κ,1

)2]

+


E

r(M )∑
i=1

wi(M)2




ln(xn)

Exn

[
1{

X̄n
ln(xn),1

/∈A
}
]

.

Since ln(xn) is proportional to n, to prove (6) it is enough to show that
if κn is any sequence such that κn/n → v ∈ [0, V (x)/∆], then

lim inf
n→∞ −1

n
log Exn




E

r(M )∑
i=1

wi(M)2




κn

Exn

[
1{X̄n

κn,1 /∈A}pn
(
X̄n

κn,1

)2]

≥ W (x) − V (x)
log
(
E
∑r(M )

i=1 wi(M)2
)

∆
.

Observe that
{
X̄n

κn,1 /∈ A
}

implies X̄n
κn,1 ∈ Cn

�nV (x)/∆�−κn
. By Condition 4,

lim inf
n→∞ −1

n
logExn

[
1{X̄n

κn,1 /∈A}pn
(
X̄n

κn,1

)2] ≥ W (x) + inf
y∈∂LV (x)−v∆

W (y).

By the subsolution property, W (y) ≥ V (y) logEr(M)/∆. Since Holder’s

23



inequality gives − log
(
E
∑r(M )

i=1 wi(M)2
)
≤ log (Er(M)),

lim inf
n→∞ −1

n
logExn




E

r(M )∑
i=1

wi(M)2




κn

Exn

[
1{X̄n

κn,1 /∈A}pn
(
X̄n

κn,1

)2]

≥ −v log


E

r(M )∑
i=1

wi(M)2


+ W (x) + inf

y∈∂LV (x)−v∆

logEr(M)
∆

V (y)

= −v log


E

r(M )∑
i=1

wi(M)2


+ W (x) + log Er(M)

(
V (x)
∆

− v

)

≥ W (x) − V (x)
log
(
E
∑r(M )

i=1 wi(M)2
)

∆
,

and the proof is complete.

4.1 Design of a Splitting Algorithm

Suppose that V (x) and ∆ are given and that we choose a splitting mechanism
(q, r, w) which is unbiased and stable. By Theorem 8 the asymptotic rate of
decay of the second moment is given by

W (x)− V (x)
log
(
E
∑r(M )

i=1 wi(M)2
)

∆
.

By Hölder’s inequality

E

r(M )∑
i=1

wi(M)2 · Er(M) ≥ E

r(M )∑
i=1

wi(M) = 1,

and therefore

− log


E

r(M )∑
i=1

wi(M)2


 ≤ log (Er(M)) .

Equality holds if and only if wi(m) = 1
Er(M ) for all i ∈ {1, . . . , r(m)} and

all m ∈ {1, . . . , J}. Given the value u = Er(M), an alternative splitting
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mechanism which is arguably the simplest which preserves the value and
achieves the equality in Holder’s inequality is that defined by J = 2 and

q1 = �u − u, q2 = 1 − q1, r(1) = �u� , r(1) = �u� + 1, wi(j) = 1/u all i, j.

(8)
Given a subsolution W̄ , the design problem and the performance of the
resulting algorithm can be summarized as follows.

• Choose a level ∆ and mean number of particles u, and define an im-
portance function V by logu · V (x)/∆ = W̄ (x). Define the splitting
mechanism by (8). The resulting splitting algorithm will be stable.

• If sn
SA is a single sample constructed according to this algorithm, then

we have the asymptotic performance

lim
n→∞−1

n
logExn [(sn

SA)2] = W (x) + W̄ (x).

• The largest possible subsolution satisfies W̄ (x) = W (x), in which case
we achieve asymptotically optimal performance.

Remark 9 Although the subsolution property guarantees stability, it could
allow for polynomial growth of the number of particles. If in practice one
observes that a large number of particles make it to B in the course of
simulating a single sample sn

SA, then one can consider reducing the value of
∆ slightly, while keeping the mechanism and V fixed. This will increase the
second moment of the estimator slightly, but will also lead to an algorithm
that requires little effort for each single sample.

5 The Associated Hamilton-Jacobi-Bellman Equa-

tion

The probability pn(x) is intimately and naturally related, via the exponential
rate W (x), with a certain nonlinear PDE. This relation is well known, and
follows from the fact that W is characterized in terms of an optimal control
or calculus of variations problem. We begin this section by defining the PDE
and the notion of a subsolution in the PDE context.

Our interest in this characterization is because it is more convenient for
the explicit construction of subsolutions than the one based on the calculus
of variations problem. See, for example, the subsolutions constructed for
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various large deviation problems in [5] and [3]. (It should be noted that the
constructions in these papers ultimately produce classical subsolutions. In
contrast, the splitting algorithms require only the weaker viscosity subso-
lution property. However, the smoother subsolutions constructed in [3, 5]
are obtained in as mollified versions of viscosity subsolutions, and it is the
construction of these unmollified functions that is relevant to the present
paper.) Other examples will be given in the next section. Since our only
interest in the PDE is as a tool for explicit constructions, we describe the
characterization formally and in the simplest possible setting, and refer the
reader to [1, 6].

For q ∈ R
d, let

H(x, q) = inf
β∈Rd

[〈q, β〉 + L(x, β)] .

Then under regularity conditions on L and the sets A and B, W can be
characterized as the maximal viscosity subsolution to

H(x, DW̄(x)) = 0, x /∈ A ∪ B, W̄ (x) =
{

0 x ∈ ∂B

∞ x ∈ ∂A
.

A continuous function W̄ is a viscosity subsolution to this equation and
boundary conditions if W̄ (x) ≤ 0 for x ∈ ∂B, W̄ (x) ≤ ∞ for x ∈ ∂A and
if the following condition holds. If φ : R

d → R is a smooth test function
such that the mapping x → [

W̄ (x)− φ(x)
]

attains a maximum at x0 ∈
R

d\ (A ∪ B), then H(x0, Dφ(x0)) ≥ 0.
Note that H(x, ·) is concave for each x0 ∈ R

d, and hence the pointwise
minimum of a collection of subsolutions is again a subsolution. It is this
observation which makes the explicit construction of subsolutions feasible in
a number of interesting problems (see [5]).

In Section 2 we defined W̄ (x) to be a subsolution to the calculus of
variations problem if it satisfied the boundary inequalities and

W̄ (x)− W̄ (y) ≤ J (x, y)

for all x, y ∈ R
d\ (A ∪ B). We now give the elementary proof that these

notions coincide. Let W̄ (x) − φ(x) attain a maximum at x0. Thus for any
β ∈ R

d and all a ∈ (0, 1) sufficiently small, W̄ (x0 + aβ) − φ(x0 + aβ) ≤
W̄ (x0) − φ(x0), and so

φ(x0) − φ(x0 + aβ) ≤ W̄ (x0) − W̄ (x0 + aβ)
≤ J (x0, x0 + aβ).
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Since J (x, y) is defined as an infimum over all trajectories that connect x

to y, we always have

J (x0, x0 + aβ) ≤
∫ a

0

L(x0 + sβ, β)ds.

Hence if, e.g., the mapping x → L(x, β) is continuous, then for all β

φ(x0) − φ(x0 + aβ) ≤ L(x0, β)a + o(a).

Using Taylor’s Theorem to expand φ, sending a ↓ 0 and then infimizing over
β gives

0 ≤ inf
β∈Rd

[〈Dφ(x0), β〉+ L(x0, β)] ≤ H(x, Dφ(x0)).

Thus W̄ is a subsolution.
The calculation just given does not show that W is the maximal viscosity

subsolution, or even that it is always safe to use a viscosity subsolution to
the PDE in the design of a splitting scheme. The characterization of W as
the maximal viscosity subsolution requires that we establish W̄ (x) ≤ W (x)
whenever W̄ is a viscosity subsolution. A standard approach to this would
be to show that given a viscosity subsolution W̄ , any point x /∈ A ∪ B,
and any ε > 0, there exists a smooth classical subsolution W̄ ε such that
W̄ ε(x) ≥ W̄ (x) − ε. When this is true the classical verification argu-
ment [6] can be sued to show W (x) ≥ W̄ ε(x), and since ε > 0 is arbitrary
W (x) ≥ W̄ (x). This brings us very close to the method of constructing
nearly optimal importance sampling schemes as described in [3, 5], where
the design of the scheme must be based on the smooth classical subsolution
W̄ ε(x) rather than W̄ (x). In all the examples of the next subsection the in-
equality W̄ (x) ≤ W (x) can be established by constructing a nearby smooth
subsolution as in [3, 5].

6 Numerical Examples

In this section we present some numerical results. We study four prob-
lems: buffer overflow for a tandem Jackson network with one shared buffer,
simultaneous buffer overflow for a tandem Jackson network with separate
buffers for each queue, some buffer overflow problems for a simple Markov
modulated queue and estimation of the sample mean of a sequence of i.i.d.
random variables.

Subsolutions, even among those with the maximal value at a given point,
are not unique, and indeed for the problems to be discussed there are some-
times a number of reasonable choices one could make. We will not give
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any details of the proof of the subsolution property, but simply note that in
each case it can be proved by a direct verification argument as discussed in
Section 5.

6.1 Tandem Jackson Network - Single Shared Buffer

Consider a stable tandem Jackson network with service rates λ < min{µ1, µ2}.
Suppose that the two queues share a single buffer and that we are interested
in the probability

pn = P(0,0) {total population reaches n before first return to (0,0) }
It is well known that

lim
n→∞−1

n
log pn = min{ρ1, ρ2}

where ρi = log µi
λ . Further, the (continuous time) Hamiltonian that corre-

sponds to subsolutions of the relevant calculus of variations problem is

H(p) = −[λ(e−p1 − 1) + µ1(e
(p1−p2) − 1) + µ2(e

p2 − 1)].

(see [3] for the discrete time analogue). Without loss of generality (see [3])
one can assume that µ2 ≤ µ1. By inspection H(p) = 0 for p = − log µ2

λ (1, 1)
(this root is suggested by the form of the escape region), and W (x) =
〈p, x〉 + log µ2

λ is a subsolution which in fact takes the maximal value at
(0, 0) and so leads to an asymptotically optimal splitting scheme. The table
below shows the results of a splitting simulation with 20,000 runs for λ = 1,
µ1 = µ2 = 4.5 and for various values of n.

n 30 40 50

Theoretical Value 2.63 × 10−18 1.03 × 10−24 3.80 × 10−31

Estimate 2.69 × 10−18 0.97 × 10−24 3.98 × 10−31

Std. Err. 0.11 × 10−18 0.04 × 10−24 0.20 × 10−31

95% C.I. [2.48, 2.90] × 10−18 [0.88, 1.05] × 10−24 [3.60, 4.37] × 10−31

Time Taken (s) 32 67 165
Total no. successes 471776 579127 810382
Max no. particles 4027 4134 6987

Table 1. λ = 1, µ1 = µ2 = 4.5, asymptotically optimal scheme.

It was noted in Remark 9 that the number of particles generated may
grow subexponentially in n and this appears to be reflected in the data.
Following the suggestion of the remark, we also considered a slightly subop-
timal subsolution in the hopes of better controlling the number of particles
with little loss in performance. The table below shows the results of numer-
ical simulation for the same problem with a splitting algorithm based on the
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subsolution W̄ (x) = 4.2
4.5W (x). Again each estimate is obtained using 20,000

runs. The results are in accord with our expectations.

n 30 40 50

Theoretical Value 2.63 × 10−18 1.03 × 10−24 3.80 × 10−31

Estimate 2.80 × 10−18 1.10 × 10−24 3.70 × 10−31

Std. Err. 0.14 × 10−18 0.08 × 10−24 0.31 × 10−31

95% C.I. [2.51, 3.10] × 10−18 [0.94, 1.26] × 10−24 [3.09, 4.31] × 10−31

Time Taken (s) 6 10 15
Total no. successes 66607 44707 25578
Max no. particles 806 1145 678

Table 2. λ = 1, µ1 = µ2 = 4.5, asymptotically suboptimal scheme.

6.2 Tandem Jackson Network - Separate Buffers

In the paper [8] the authors address the problem of asymptotic optimality
for splitting algorithms. In particular they consider an approach to choos-
ing level sets that are claimed to be “consistent” with the large deviations
analysis and show that this does not always lead to asymptotically opti-
mal algorithms. They illustrate their results by considering, for a tandem
Jackson network, the problem of simulating the probabilities

pn = P(0,0) {both queues simultaneously exceed n before first return to (0, 0)} .

It is shown that
lim

n→∞−1
n

log pn = ρ1 + ρ2
.= γ,

and the authors propose a splitting algorithm based on the importance func-
tion U(x) = γ − γ min{x1, x2}, which is just a rescaling of the target set
B = {(x, y) : x ≥ n or y ≥ n}. They show that although the level sets given
by this function may intuitively seem to agree with the most likely path to
the rare set identified by the large deviations analysis, the resulting splitting
algorithm in fact has very poor performance. By analyzing this importance
function using the subsolution approach it is very easy to see why this is
the case. The Hamiltonian corresponding to subsolutions is the same as in
the previous section and it is clear to see that U(x) is not a subsolution.
However, the function

W (x) = γ − ρ1x1 − ρ2x2

is a subsolution. Further W (0) = γ, thus the corresponding importance
function will lead to an asymptotically optimal splitting algorithm. Nu-
merical results are presented for the cases λ = 1, µ1 = 3, µ2 = 2 and
λ = 1, µ1 = 2, µ2 = 3 which are the same rates originally considered in
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[8]. Each estimate was obtained by a simulation using 20,000 runs.

n 10 20 30

Theoretical Value 9.64 × 10−8 1.60 × 10−15 2.64 × 10−23

Estimate 9.61 × 10−8 1.60 × 10−15 2.50 × 10−23

Std. Err. 0.17 × 10−8 0.03 × 10−15 0.06 × 10−23

95% C.I. [9.28, 9.94] × 10−8 [1.53, 1.66] × 10−15 [2.38, 2.61] × 10−23

Time Taken (s) 17 137 454
Total no. successes 116255 116918 110337
Max no. particles 672 2274 3864

Table 3. λ = 1, µ1 = 3, µ2 = 2, asymptotically optimal scheme.

n 10 20 30

Theoretical Value 9.64 × 10−8 1.60 × 10−15 2.64 × 10−23

Estimate 9.49 × 10−8 1.67 × 10−15 2.76 × 10−23

Std. Err. 0.27 × 10−8 0.07 × 10−15 0.14 × 10−23

95% C.I. [8.97, 10.0] × 10−8 [1.54, 1.80] × 10−15 [2.49, 3.02] × 10−23

Time Taken (s) 14 107 368
Total no. successes 114763 122184 121847
Max no. particles 1470 7302 16050

Table 4. λ = 1, µ1 = 2, µ2 = 3, asymptotically optimal scheme.

As expected, these results show a vast improvement over those obtained
in [8]. Finally the tables below show the results of numerical simulation
for the same problem with a splitting algorithm based on the subsolution
W̄ (x) = 0.95W (x).

n 10 20 30

Theoretical Value 9.64 × 10−8 1.60 × 10−15 2.64 × 10−23

Estimate 9.57 × 10−8 1.55 × 10−15 2.47 × 10−23

Std. Err. 0.21 × 10−8 0.05 × 10−15 0.13 × 10−23

95% C.I. [9.17, 9.98] × 10−8 [1.45, 1.65] × 10−15 [2.22, 2.72] × 10−23

Time Taken (s) 8 38 67
Total no. successes 47268 18875 7425
Max no. particles 433 545 703

Table 5. λ = 1, µ1 = 3, µ2 = 2, asymptotically suboptimal scheme.

n 10 20 30

Theoretical Value 9.64 × 10−8 1.60 × 10−15 2.64 × 10−23

Estimate 9.32 × 10−8 1.54 × 10−15 2.56 × 10−23

Std. Err. 0.30 × 10−8 0.07 × 10−15 0.20 × 10−23

95% C.I. [8.73, 9.92] × 10−8 [1.39, 1.70] × 10−15 [2.16, 2.96] × 10−23

Time Taken (s) 7 30 57
Total no. successes 46037 18859 7710
Max no. particles 780 1724 1712

Table 6. λ = 1, µ1 = 2, µ2 = 3, asymptotically suboptimal scheme.

The choice of W (x) = γ−ρ1x1 −ρ2x2 as importance function may seem
arbitrary, however it turns out to be a very natural choice. Given α > 0
consider a “nice” set B such that for the importance function Wα(x) =
α − ρ1x1 − ρ2x2, B ∩ {x : Wα(x) > 0} = ∅ and B ∩ {x : Wα(x) = 0} �= ∅.
Then

lim
n→∞−1

n
log pn = α,
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where

pn = P(0,0)(queue reaches nB before first return to (0, 0)).

Intuitively this means that all points on a level set of the function Wα(x)
have the same asymptotic probability. Thus given any such nice set B we
can identify its large deviations rate by finding the unique α∗ such that
B ∩ {x : Wα∗(x) > 0} = ∅ and B ∩ {x : Wα∗(x) = 0} �= ∅. Further Wα∗(x)
will be an asymptotically optimal importance function.

That the family of functions Wα has such a property is because the sta-
tionary probabilities for a stable tandem Jackson network have the product
form π({i, j}) = (1 − ρ1)(1− ρ2)ρ

i
1ρ

j
2. Indeed, by using an argument based

on the recurrence theorem, we can see that every stable tandem Jackson
network has a family of affine subsolutions with the same property. Further
this will be true for any N -dimensional queueing network for which the sta-
tionary probabilities π have asymptotic product form, by which we mean
that there exist ρ1, . . . , ρN such that for any nice set B

lim
n→∞−1

n
logπ(nB) = inf{x1ρ1 + · · ·+ xNρN : (x1, . . . , xN) ∈ B}.

6.3 Non-Markovian Process

Since many models are non-Markovian we present an example of splitting
for a non-Markovian process. Consider a tandem network whose arrival
and service rates are modulated by an underlying process Mt which takes
values in the set {1, 2}, such that the times taken for the modulating pro-
cess to switch states are independent exponential random variables with
rate γ(1) if M is in state 1 and γ(2) otherwise. Let λ(1), µ1(1), µ2(1) and
λ(2), µ1(2), µ2(2) be the service rates of the queue in the first and second
states respectively. It is known (see, e.g., [4]) that the Hamiltonian can be
characterized in terms of the solution to an eigenvalue/eigenvector problem
parameterized by p. This characterization is used for calculating the various
roots to H(p) = 0 used below.

Consider again the single shared buffer problem. Let λ(1) = 1, µ1(1) =
3.5, µ2(1) = 2.5, γ(1) = 0.2 and λ(2) = 1, µ1(2) = 4.5, µ2(2) = 4.5, γ(2) =
0.5. Using a verification argument, one can show that W (x) = 1.00029(1−
x1 − x2) is a subsolution with the maximal value W (0). Thus using W (x)
leads to an asymptotically optimal splitting scheme. The results of simula-
tions run using this importance function are shown below, where again each
estimate was derived using 20,000 runs.
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n 30 40 50

Theoretical Value 6.36 × 10−13 2.88 × 10−17 1.30 × 10−21

Estimate 6.05 × 10−13 2.91 × 10−17 1.33 × 10−21

Std. Err. 0.21 × 10−13 0.11 × 10−17 0.06 × 10−21

95% C.I. [5.63, 6.47] × 10−13 [2.69, 3.13] × 10−17 [1.21, 1.44] × 10−21

Time Taken (s) 3 5 8
Total no. successes 47992 51023 51434
Max no. particles 195 330 469

Table 7. Markov-modulated network, total population overflow.

It is also worth revisiting the separate buffers problem for the same
queueing network. For the same arrival and service rates one can again use
a verification argument to show that W (x) = 2.2771− 1.2953x1 − 0.9818x2

leads to an asymptotically optimal splitting scheme. Results of a simulation
using 20,000 runs are shown below.

n 10 20 30

Theoretical Value 8.36 × 10−10 1.07 × 10−19 1.39 × 10−29

Estimate 8.37 × 10−10 1.07 × 10−19 1.44 × 10−29

Std. Err. 0.20 × 10−10 0.03 × 10−19 0.05 × 10−29

95% C.I. [7.99, 8.76] × 10−10 [1.01, 1.13] × 10−19 [1.34, 1.54] × 10−29

Time Taken (s) 12 89 273
Total no. successes 129643 128335 133658
Max no. particles 1215 5126 8051

Table 8. Markov-modulated network, simultaneous separate buffer
overflow.

Finally we investigate what happens in this case if we use a strict sub-
solution as importance function. The table below shows the results of a
simulation using 20,000 runs based on the importance function W̄ = 0.95W .

n 10 20 30

Theoretical Value 8.36 × 10−10 1.07 × 10−19 1.39 × 10−29

Estimate 8.33 × 10−10 1.14 × 10−19 1.38 × 10−29

Std. Err. 0.21 × 10−10 0.04 × 10−19 0.07 × 10−29

95% C.I. [7.91, 8.74] × 10−10 [1.06, 1.22] × 10−19 [1.25, 1.51] × 10−29

Time Taken (s) 8 42 91
Total no. successes 77221 49032 27527
Max no. particles 883 2887 3800

Table 9. Markov-modulated network, asymptotically suboptimal scheme.

6.4 Rare Events for the Sample Mean

It is also worth noting that this approach works just as well for finite
time problems. Assume that X1, X2, . . . is a sequence of i.i.d. N(0, IN)
random variables where IN is the N -dimensional identity matrix and let
Sn = 1

n

∑n
i=1 Xi. Suppose that we are interested in simulating the sequence

of probabilities
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pn = P {Sn ∈ C}
for some set C such that C̄ does not include the origin. For j ∈ {1, . . . , n}
let Sn(j) = 1

n

∑j
i=1 Xi. Then given sequences xn, jn and x ∈ R

N , t ∈ [0, 1]
such that limn→∞ xn = x and limn→∞ jn/n = t, the large deviations result

lim
n→∞−1

n
logP {Sn ∈ C|Sn(jn) = xn} = W (x, t)

holds. Further the PDE corresponding to solutions of the calculus of varia-
tions problem is (see [5])

Wt + inf
β

H(DW ; β) = 0,

where H(s; β) = 〈s, β〉 + L(β) and L(β) = ‖β‖2/2. We can put this into
the general framework in the standard way, i.e., by considering the time
variable as simply another state variable. The set B, for example, is then
C ×{1}. Strictly speaking this problem does not satisfy the conditions used
previously, since the sets A and B no longer have disjoint closure. Although
we omit the details, it is not difficult to work around this problem.

It is easy to see that any affine function of the form

W̄ (x, t) = −〈α, x〉+ ‖α‖2 − (1 − t)H(α),

where H(α) = ‖α‖2/2, is a subsolution, though it may not have the optimal
value at (0, 0) and may not be less than or equal to zero on B. We can use
the fact that the minimum of a collection of subsolutions is also a subsolution
to build a subsolution which satisfies the boundary condition and has the
maximal value at (0, 0). For example, suppose that C = {x ∈ R

2 : 〈p1, x〉 ≥
1} ∪ {x ∈ R

2 : 〈p2, x〉 ≥ 1} where p1 = (0.6, 0.8) and p2 = (0.6,−0.8).
Let W1(x) = 1 − 〈p1, x〉 − 1

2 (1 − t), W2(x) = 1 − 〈p2, x〉 − 1
2 (1 − t). Then

W̄ = W1∧W2 is a subsolution and in fact provides an asymptotically optimal
splitting scheme since W̄ (0, 0) = W (0, 0). Numerical results are shown
below. Each estimate was derived using 100,000 runs. In contrast to all
the previous examples where the process evolves on a grid, the simulated
process in this case may cross more than one splitting threshold in a single
discrete time step. This appears to increase the variance somewhat (at least
if the straightforward implementation as described in Section 2 is used),
and hence we increased the number of runs to keep the relative variances
comparable.
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n 20 30 40

Theoretical Value 7.75 × 10−6 4.33 × 10−8 2.54 × 10−10

Estimate 7.36 × 10−6 4.21 × 10−8 2.46 × 10−10

Std. Err. 0.21 × 10−6 0.12 × 10−8 0.08 × 10−10

95% C.I. [6.94, 7.78] × 10−6 [3.97, 4.45] × 10−8 [2.31, 2.61] × 10−10

Time Taken (s) 15 38 85
Total no. successes 16209 13756 11934
Max no. particles 155 379 298

Table 10. Sample mean for sums of iid.
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